Research Interests:
Research Interests:
Sugarcane bagasse (SB) is a by-product of ethanol production obtained in large quantities worldwide, including Brazil. Lignin is one of SB components, and its extraction is of great interest due to its vast potential for use. In this... more
Sugarcane bagasse (SB) is a by-product of ethanol production obtained in large quantities worldwide, including Brazil. Lignin is one of SB components, and its extraction is of great interest due to its vast potential for use. In this study, sugarcane bagasse was subjected to two methods of lignin extraction to obtain: Klason lignin (LKL) and milled wood lignin (MWL). The syringil/guaiacyl ratio of the lignin obtained from sugarcane bagasse was 1.67. Thermogravimetric analysis showed that LKL is more resistant to thermal degradation than MWL. According to the FTIR spectra, LKL yields a more oxidized lignin, presenting greater changes in its structure than MWL. Thus, this study provides information on the changes caused by different extractions and strengthens future studies on the transformation of lignin into products of high added value.
Research Interests:
Research Interests:
Research Interests:
The main and new surface modification methods of activated carbon (AC) and their influence on application (adsorption capacity) were reviewed. Adsorption capacity is an important issue, contributing to hazardous substances environment... more
The main and new surface modification methods of activated carbon (AC) and their influence on application (adsorption capacity) were reviewed. Adsorption capacity is an important issue, contributing to hazardous substances environment management. According to literature, it is true that surface chemistry strongly affects adsorption capacity. Surface chemistry can be modified by several methods that lead to different activated carbon properties. Furthermore, adsorbate properties, and their relationships with surface structure, can impact adsorption properties. Surface modifications can be conducted by adding some atoms to the surface structure, making the surface more acidic or basic. Introduction of oxygen and ammonia atoms (chemical modification) are the main processes to make the surface more acidic and basic, respectively, although may bring chemical wastes to environment. Surface modification is done by chemical and physical modifications that lead activated carbons to present d...
Research Interests:
Dye degradation is a significant topic in environmental science, since dyes can bring several problems to the environment. Activated carbon (AC) is an important material used as adsorbent of these hazardous substances, but need to be... more
Dye degradation is a significant topic in environmental science, since dyes can bring several problems to the environment. Activated carbon (AC) is an important material used as adsorbent of these hazardous substances, but need to be improved especially into specific substances. This paper aimed to evaluate the impact of activated carbon surface modified by corona treatment (electric discharge) on adsorption of different dyes. Activated carbons were treated by corona treatment to cause surface modification, modifying exposure time to treatment (2, 5, 8 and 10 minutes). Evaluation of adsorption was performed by adsorption isotherms and kinetic adsorption. Dyes differed in their charge (anionic or cationic) and molecular weight. Dyes used were Methylene Blue (cationic) and Congo Red (anionic). Surface area and Scanning Electron Microscopy (SEM) were also conducted. Surface chemistry was impacted by corona treatment and interfered in dye adsorption. There was decrease of dye adsorption...
